「コンプライアンス研修に見つけた確率の問題」

昨日は職場のコンプライアンス研修会を行いました。

副校長先生の発案によるサイコロトーク。

11個のテーマを用意し、サイコロを2個振り、
出た目の和の番号のテーマについて
1分間スピーチをするというルールです。

コンプライアンス研修01

4人一組のグループで楽しく行いました。

コンプライアンス研修02

コンプライアンス研修03


私もあるグループに混ぜてもらいました。

ところで、やっていると、あちこちで、

「交通法規」や「利害関係者との対応」
「クレーム対応」のスピーチが
多いことに気づきだしました。

「薬物乱用」「パワハラセクハラ」が
殆ど出てこないことも。

そりゃあそうだよね。

目の和が7の場合の確率は1/6
目の和が2の場合の確率は1/36
ですからねえ。

数学の初任者のK先生に、
こんな質問をしました。

「サイコロ2個振って目の和で考えると
11のテーマの出現する確率は
二項分布に従ってしまう。
じゃあ、サイコロを2個使って
一様分布にするにはどうすればよいか」

つまりどのテーマが選ばれるのも
同様に確からしくするにはどうすればよいか、
という質問です。

皆さんはどう考えますか?

ちなみに、彼は
瞬時にうまい方法を答えてくれました。

それは、次のような方法です。

Ⅰ 2つのサイコロをA,Bと区別する。
Ⅱ Aのサイコロの目が偶数なら、
  偶数番号のテーマが選ばれる。
  奇数なら奇数番号のテーマが選ばれる。
Ⅲ Bのサイコロの目が、その中の順番とする。


例えば、Aが2で、Bが3なら、
Aは偶数なので、
②④⑥⑧⑩⑫の偶数テーマの方が選ばれます。

そして、Bは3なので、
その中の3番目の⑥が選ばれました。

つまり、②④⑥⑧⑩⑫が選ばれる確率は、
Aが偶数で、かつBがその番号の
順番の目が出ればいいので、
それぞれ(1/2)×(1/6)=1/12 ですね。

③⑤⑦⑨⑪の場合はAが奇数が出て、
Bが1の目なら③が、
Bが2の目なら⑤が決定されるということなので、
それぞれの確率も、
(1/2)×(1/6)=1/12 ですね。

なるほど。うまい!

と一瞬思いましたが、
実はよく考えると疑問が湧きます。

テーマは11個なので、
全部の確率の和が11/12。

1になりませんね。


Aが奇数で、Bが6の目が出た場合、
奇数テーマは5個なので、
対応するテーマがありません。
この場合は
「何も話さなくてもよい」
としてもいいのですが、

必ずトークをすることにすれば
テーマをもう一つ増やして(⑬)
全部で12個にする必要がありますね。


でも、もう少しこの問題を
掘り下げて考えてみましょう。

もし、Aが奇数で、Bが6の目の場合、
対応するものがないから、
「再度最初からやり直す」
というルールを設定しましょう。

これを、次のような確率推移図で考えてみます。

確率推移図

青の矢印で移動する確率は1/2
赤の矢印で移動する確率は1/6です

すると、例えば、テーマ③が選ばれる確率は、
Aが奇数でBが1の目か、
Aが奇数でBが6の目で、
次にまたAが奇数でBが1の目でもいいですね。

そうやって考えていくと、これは、
無限数列で表される確率になりますね。

つまり、

(1/2)×(1/6)
+(1/2)×(1/6)×(1/2)×(1/6)
+(1/2)×(1/6)×(1/2)×(1/6) ×(1/2)×(1/6)
+・・・

初項1/12、公比1/12の等比数列なので、
求める確率は

(1/12)×{1/(1-1/12)}=1/11 

となり、一様になりますね。

めでたしめでたしですね。


この問題は、
A,Bの2人がジャンケンをしたとき、
それぞれが勝利する
確率を求める問題と同じ構造です。

どちらが勝つ確率も同様に確からしいので、
それぞれ1/2と考えてもいいのですが、
細かく考えると
次のような無限級数になります。

1/3+(1/3)(1/3)+(1/3)(1/3)(1/3)+・・・=1/2

つまり、Aが勝つ確率は、
1回目にAが勝つか、
1回めにアイコで、2回目にAが勝つか・・・
と考えるわけですね。


サイコロトークに潜む確率、
とっても面白い。

 

コメント

コメントの投稿

  • URL
  • コメント内容
  • password
  • 秘密
  • 管理者にだけ表示を許可する

トラックバック

トラックバックURL: http://simomath.blog.fc2.com/tb.php/1373-7269cdee