「数学という名の自由の翼」連載終了!

雑誌「数学教室」の3月号が来ました。
連載「数学という名の自由の翼」
遂に最終回を迎えました!

今日は、2年間にわたり書き綴ってきた
自分へのご褒美で一人酒に浸りました。

以下、最終回の内容の一部を以下に紹介します。



今日でこの連載も28回目。
ついに最終回がやってきました!
お付き合いいただいた
100万人の「数学教室」愛読者の皆様
ありがとうございました^^。

「数学という名の自由の翼」というテーマで、
書き散らかしてきましたが、
私の中に一貫してあったことは、
「今の数学教育をどげんかせんといかん」
というドン・キホーテ的思い込みだったり、
「数学教育って何だろう」っていう、
数学の輪郭をなぞりながら
自分探しをする旅だったのかもしれません。

最終回では、そんな私の
数学に対する思いを書き連ねて、
まとめにかえたいと思います。

1 数学の問題を解くとは

ある人に、
「高校において数学の問題を解くとはどういうことか」
と問うてみたところ、次のような答えが返ってきました。

「数学とはいくつかの前提となる条件から、
公式など既知の解法パターンを駆使して
演繹的に答えを導く作業である。
そこから論理的思考力が育つ。」

図に描くとこんなカンジですね。

数学教室㉘01


しかし、私は、解答を導く思考過程は、
最初から「模範解答」にあるような流れに沿って
行われるとはどうしても思えません。

実際は、問題文から、条件を見つけ、
式にしていくだけでなく、図やグラフ、
時には表を作ってみたり、
具体的な数値を入れてみたり、
そういう試行錯誤によって、
「図・グラフ」「条件・ことば」「式」が
ぐるぐると循環していく中で、
解答への糸口が見つかるのではないかと思います。

数学教室㉘02


ですから、「式」や「図・グラフ」が語っている声に
耳を傾けること、つまり、式や図などと
友達になるような活動を
授業の中に取り入れていく必要が
あるのではないかと思うのです。

例えば、なぜを掘り下げ、
理由を言葉で説明しあう活動を取り入れるとか、
教具を用いて概念を「見える化」する
などが考えられます。

それは一見回り道に見えるかもしれませんが、
一方的に模範解答をひたすらなぞっていく授業より、
はるかに大きなものを子どもたちは
身につけるのではないかと思います。


さて、もう一度先ほどの問いの
答えについて考えてみましょう。

「数学とはいくつかの前提となる条件から、
公式など既知の解法パターンを駆使して
演繹的に答えを導く作業である。
そこから論理的思考力を育つ。」

確かに数学はそのような一面をもっています。
でも私はそこには
欠けているものがあると思うのです。
それは「前提となる条件」や
「得られた解の意味」を考えることです。

数学とは、現実の様々な事象をモデル化し、
分析するものとしての意味もあります。

多くの要素が複雑に絡まり合う「構造」を持つ
「現実」の属性や指標を、ある視点で眺め、
切り取り、抽出し、組み合わせて
数学の問題としてリメイクすること。

そして、出てきた解が現実世界をよく
記述するものであるかを
操作や実験などの活動を通して実感すること。

それも数学の一つの顔であり、
そこから分析と総合の能力が
育つのではないかと思います。

2 数学とは何か

最近私は朝のスロージョギングが
日課となっています。
ある日曜日、少しゆっくり起き、
いつものコースを走りました。

すると、家から数百メートルのところに
リンゴ畑があることに気づきました。
そのリンゴがとても美しく、
見ていて心が洗われました。

私はこのリンゴの木を見ながら、
数学者の岡潔氏の「数学と情緒」について
思いを馳せていました。

岡潔の「春宵十話」(名著!)のはしがきに
こんなことが書かれています。

「数学とはどういうものかというと、
自らの情緒を外に表現することによってつくりだす
学問芸術の一つであって、知性の文字板に、
欧米人が数学と呼んでいる形式に表現するものである」


そして、岡氏は、学問は頭でするのではなく
「情緒が中心となる」と主張します。

「緒」とは端緒などと用いるように、
「いとぐち」「きっかけ」を表す言葉です。

「情」とは、感情や心の変化を表すもの。かな。

リンゴの話に戻します。

リンゴがどんなにきれいに実っていても、
それに気づく人と、
気づかずに通り過ぎていく人がいます。

あるいは、リンゴの実の存在に気づいても、
心が動かない人もいるでしょう。

「ただの食べ物じゃん」みたいな。

私は、そのリンゴの実の価値は、
リンゴ自身にあるのではなく、
それを見た人の「気づき」によって
生みだされていくと考えたいと思います。

リンゴが「緒」で、そこで「情」が動き出すというように。

私の好きな言葉に、
幸せとは「築く」のではなく「気づく」こと、
というものがあります。ここで、
この「幸せ」を「学び」に置き換えてみましょう。

学びとは「築く」のではなく「気づく」こと

それは、学びとは、ある事物や現象を眺め、
そこに潜んでいるものに心が動かされること、
そして、それらの事象を「いとぐち(緒)」にして、
思考が駆動され、自分の内部にあったものを
自分自身で掴み取ることであると考えてみたいのです。

そのような見方をすると、数学とは、
自然や、宇宙や、図形や、数や言葉や式など
あらゆるものに心を寄せ、それらと一体化し、
心が動きだすことであり、それによって、
自分の中にある「何か」を呼び起こし、
気づき、つなげていくことであるとも
言えるのではないでしょうか。

これこそがまさに数学の情緒
ということではないか、と。

さて、私は、リンゴを見たとき、
岡潔氏のことと同時に、2年前、
ある高校に勤務していたときの
3年生のDさんのことも思い出していました

Dさんは、数学の課題研究グループに所属し、
合同変換群の研究をしていました。

彼女たちの研究は、東北地区の発表会で
見事優秀賞を受賞します。

その一方、Dさんは文芸部に所属していました。

この年、彼女が書いた
「細工ロイドの通り道」という小説が、
何と全国1位の文部科学大臣賞に輝きました。

この小説は、進路に悩むある女子高生を主人公とする
爽やかな学園ものです。

作中、「細工ロイド」のことを、

「小細工ばかりするロボットってこと。
私のことだよ」

という描写があります。
透き通るようにカッコいいフレーズですね。

また、進路を決められない主人公を慰める
こんなセリフがまた素敵です。

「でもね、実際はそうじゃない。
サイクロイド曲線をたどることは
無駄なんかじゃないの。
サイクロイド曲線を通っていても
絶対にゴールへはたどり着くし、
しかも他の曲線を通っている人より
早くゴールテープを切れるんだよ」

これは「学び」や「授業」についても
本質を突くことばではないでしょうか。

さて、そんなDさんの文部科学大臣賞受賞
に向けての挨拶文を読んで、私はシビレました。

その一部を以下に抜粋します

この度、最優秀賞を頂いた「細工ロイドの通り道」は
理系少女たちの物語になっています。
作中で紹介されているサイクロイド曲線は、
きっと文系の方々には馴染みのないもので、
理系の私だからこそ書けた小説なのでしょう。

文芸部での活動と理系という進路とは
私の中で当初交わらないものでした。

しかし、2年と半年という文芸部での活動を通して、
その考えは変わりました。

文芸作品とは、自然法則のようなものだと思うのです。

この世界に存在している自然法則を
解明しようという理学の姿勢は、
筆者が書き出した世界を紐解く読者の姿勢と
同じもののように感じるのです。

自然法則も、文芸作品も
確かに存在しているものの、
私たちが気に留めなければ何の意味も示せません。
表面を眺めてみても、
少し理解できた気になるだけで、
その本質は見えてこないのです。


しかし、真剣に向き合ってみれば、
そこにはヒントが散りばめられていて、
それを手がかりに世界を自分のものへと
引き寄せることができます。


(傍線付記)

この文の傍線部分が、
まさに情緒なのではないかと思います。

きっと、Dさんは、対象に真剣に向き合うことで、
自分の中に眠っていた「宝」に
リーチすることができたんですね。

Mathematicsの語源である、
μαθηματα(マテマタ)とは、
「学ばれるもの」という意味なのだそうです。

それに従うと、「数学とは何か」とは
「学びとは何か」を問うことと同じと
考えることができます。

そして、学びとは、誰かによって
知識や技能が注入され、
「真っ白な自分」が変容されていくことではなく、
はじめから自分の中にあるものを
自ら引き寄せることなのだと思います。

同時に、教えることとは、
相手がはじめから持っているものを、表面化させ、
自分で掴み取るように
導くことなのではないかと思います。


三流の教師は、ひたすら与え、
一方的に教科書の内容を刷り込みます。

そして、目先の結果や成果にこだわり、
強制、強要、叱責によって
子どもを正そうとします。

そしてその結果、
多くの数学嫌いを生み出してしまいます。

では、カッコよく難問を解いてみせ、
生徒たちから「神」とよばれる教師、
あるいは、パフォーマンスや話術で
巧みに生徒をのせる教師はどうでしょう。

どちらも素晴らしい数学教師なのかもしれません。

でもそれはまだ二流。

一流の教師は、授業で子どもたちに
トキメキを与え、彼らの情緒を育てます。

そして、子どもたちが、すでに心の中に持っている
「数学」の存在に、自ら気づかせ、
掴みとるように導くでしょう。

「そうだよ、答はあなたの中にあるよ」と。

そうやって自ら気づき、引き寄せたものこそが、
「数学という名の自由の翼」。

それはきっと、生涯にわたって羽ばたき続けていく、
かけがえのない宝物であると私は信じています。

長い間お読みいただきありがとうございました。


 

コメント

このコメントは管理人のみ閲覧できます
2017/ 02/ 17( 金) 21: 10: 30| | # [ 編集 ]
 

コメントの投稿

  • URL
  • コメント内容
  • password
  • 秘密
  • 管理者にだけ表示を許可する

トラックバック

トラックバックURL: http://simomath.blog.fc2.com/tb.php/1372-40b9fcb3